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ON DETERMINING 
DEFORMATION TENSORS 

The paper deals with establishing a rheological equation connecting the mean stress 
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and deformation tensors in a structurally inhomogeneous elastic medium.The problem 
is formulated in the dynamic terms, and the defining equations are sought in the 
form of linear operator relations. The expression for the elastic operator is ob- 
tained in the form of a perturbation series, the terms of which represent a super- 
position of the linear integral operators. Partial sums of the series are obtain- 

ed using the method of chanqingthe field variables (taking into account the multiple 

scattering). An expression for the elastic operator kernel is obtained consisting 
of three different type terms, namely the quasi-static, couple stress and nonlocal 
terms. 

The problem of determining the relation between the mean stress and deformation tensors 

was formulated in /l/, where the connection with the couple stress theories was established 

under certain conditions. The existence of such a connection was first shown in /2/. In 
general, the relation between the macroscopic stresses and deformations is an operator-type 

relation /3-55/, and in the case of static problems it is sufficient to compute only the 
quasi-staticpart in the one-point approximation /6-88/. In the dynamic problems the two-point 
and multi-point approximations are important, because they determine the decay and dispersion 
of the waves investigated in the Born approximation in /7--O/. The elastic operator is 
computed, with the scattering of every multiplicity taken into account, using the method of 

changing the field variables /5,11/. The kernel of the operator is written in explicit form 
and this allows one to consider, depending on the characterisitic scale of the field varia- 

tions, the connection with the couple stress and nonlocal theories. 

1. Let us consider an elastic medium in which the stresses and deformations are connect- 

ed by the generalized Hooke's law 

0 = he, f2ij = 'i, (Uj,j + Uj,i) (1.1) 

Here and in the following the straightforward tensor notation is used, reverting to the indic- 

ial notation, whenever necessary to find their value, and hijkl Cx) is the elastic coefficients 

tensor depending randomly on the spatial coordinates. 

Thepropagation of a harmonic wave is a randomly inhomogeneous elastic medium is describ- 

ed by the equation 
Lu = 0, L = ana + pow2 (1.2) 

The relations (1.1) and (1.2) are local and statistically nonlinear, therefore the system of 

equations in moments will not be closed. Let us introduce an elastic operator A* by means 

of the relation 
(0) = (k) = A? (e) = 1 h* (x,x1) <e (x1)> dx, (1.3) 

where A+ is a linear integral operator the kernel of which remains to be determined. Averag- 

ing (1.2) and taking (1.3) into account, we obtain 

L* (u) = 0, L* = an*a + pO d (1.4) 

For higher order moments of the displacement field U, closed systems of equations can be 

obtained in the same manner by introducing effective higher order operators. 

Let us turn our attention to the problem of computing the kernel J"* (x, x1). To do this 

we introduce into our discussion an auxilliary medium with parameters &l, PO the dynamics 

of which are described by the equation 

L,u, = 0 (1.5) 

Equations (1.2), (1.5) are reduced to the equivalent integral equation 

e = e, - s G,, (x - x1) h’(x1) e (x1) dxl . G,, = G(“)6 (x - x1) + G(‘) (x - x1) 
(1.6) 
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where G,,, is the second order derivative of the dynamic Green's tensor of an unbounded medium 

with parameters h,,p,, G(“’ being its singular and G(r) its regular part. 

The solution of (1.6) is written in the form of a series in powers of the tensor &jkl(X), 

and the n-th term of the series corresponds to n-tuple scattering of the field u0 on the in- 

homogeneities of the medium. The expression for h* (x,x1) has the form of a series in moments 

of the field h(z). So far, only the two-point moments are known in the explicit form, there- 

fore we usually have to limit ourselves to the correlation (Born) approximation with corres- 
ponds to a single scattering. This approximation presupposes the smallness of the fluctuations 

1', i.e. it is useful for weakly inhomogeneous media. 

Let us consider the problem of computing h*(x,x,) using the method of replacing the 

field variables /5/. We introduce, in place of h(x)and e(x) I new field variables P (x) and 
E(x) according to the formulas 

Ynjsl = &lB&str Ei,= B<rnkl+ 7 Bim~l= &&nl + Gin, mj nlkl (3) h’ (1.7) 

G1@) = (3h, + Spa) q-1, G,c”) = - (h, + po) m,-' , m. = l%h PO + %J 

Then the equations (1.6) become 

E = q - l G@) ( x --~)y(x1)E(xl)dxl (1.8) 

Solving (1.8) by consecutive iterations, we obtain a series in powers of p(x)which converges 

most rapidly when 

<YijtL) = 0 (1.9) 

We can verify directly that<E)satisfies the equation 

<E) =eo + j i @')(x--x1) Q(xz> XI) <E(x~))kdx,, Q (x1. xz) = (y (x1) y (x2)) G(“) (x1 - x2) + (1.10) 

Averaging (1.8) we obtain 

'(1.11) 

and equating (1.10) with (1.11) we find 

y*=_Q (1.12) 

In what follows, we shall assume the medium to be statistically isotropic and homogeneous. 

Let us average (1.7), taking into account the expressions defining the operators .\* and 

r* I and apply the Fourier transformation. Then the relation between the transforms 

n*(~,k)= ih*(p)e-ikpdp, D*(w, k) = {:'*(p)e-'kp dp 

is defined by the formulas 

)XM = & + K&D&l ( Mpnpj = $m&j - DZjimGg, ,,,* (1.13) 

Applying theinverse Fourier transformation to the relations (1.13), we obtain the expression 

for the kernel of the elastic operator in the form 

h* (0, p) = h" 6 (p) -I- J.(d) (0, p), p = x - Xl, hcd) (0, p) = (~Jc)-~ s M-l (61, k) D* (0, k) eikPdk (1.14) 

From (1.14) it follows that the kernel of the elastic operator is written in the form of asum 
of the singular part with the tensor &jkl of elastic constants obtained from (1.9), and the 

dynamic part @!1(o,p) which, in general, represents a series in moments Y1jh.f (r). 

2. Let the medium in question be a two-component composite with isotropic components. 
Then the relations (1.9) are reduced to the form 

8 Go3 - Go2 120 (G> - 9K, - 12 (G, + G,)) - 3G, [5K, (G) - 2K,Sg + &,G,l - 6KoGG,G, = 0 (2.1) 

Kc,=(K)+ ,,32h,s . s, = hfl + CJZ 7 
k 

~1 + cz = 1, Rf (0) = c,c, (fl - fe)” 

where Go and Koare the macroscopic shear and volume moduli of elasticity of the auxilliary 

equivalent medium /5/. 
Let us now turn to computing h(d) (o,.p). We note that the tensors H&a(o,k), D&a (co, k) in 

the space of wave numbers k = {ki} (i = 1,2,3) and h$,dip(o, p), -&,b (0,~) in the Cartesian coordin- 

ate space p = {pi} (i = 1, 2, 3) h ave the form of isotropic tensors /5,11/ 
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Iijyb = l/4 ('%dj@Yb" _:_ &byj"yy" + 6,yynoybo + 6jbyn%Y")r zfGvb = ynOyj%yOybo~ Yi’ = Yi 1 Y 1-l 
We shall compute ?@(o,p) in the two-point approximation in y(x)which corresponds to summing, 

in the dispersion series over h(x), of the two-point moments of all orders, i.e. to taking 
into account the scatterings of every multiplicity. 

For the strongly isotropic media N, -= 0 (cz = 3,4,5,6) /5/, and the formulas (1.13) be- 

(2.2) 

K*=Ko-: &, T = (h, + zG,,)-1 , K* = I&* -; */a&*, D* = Dl* + ziaDz* 

The eigenvalues Dz* and D*can be written, for the exponential type correlation functions, in 

the form of series in powers of k2 

D* (e, k) = ; y,P”, Dz* (w, k) = 5 y~‘/i”” (2.3) 
n==a n=o 

The coefficients yn and y,,(') are fairly bulky and depend on 0, K,, G, and the correlation 

radius a . The character of the dependence is determined by the form of the actual correla- 

tion function. 

Taking into account the expressions 

m 

@ (0, k) = 1 - T 5 ynk2" = (1 - Ty,) n. (1 - k2kn”), 
m m 

m(t) (o, k) = 1 _ T(‘) 2 yF’P’= (1 - TC’)y$) n (1 - k%;‘-2) 
n=o n=o ?I=0 ?I=0 

we write the formulas (2.2) in the form 

Here k, and k,(') are roots of the functions cP(o, k) and @(Q (0, k) , respectively. 

Passing in (2.4) back to the originals in accordance with the formulas (1.14), we obtain 

the following expressions for the kernels of the elastic operator (A is the Laplace operator): 

A,* (CO, p) = G,6 (p) + & 2 #‘A” (+ 2 & eikap) 
n=ll m=o 

Using the representation 

A”(g) = (- 1)” liz+ + 4n &W (_ f)(n+l-l)Al-lij @) 

,=I 

we transform (2.5) to the form 

(2.5) 

(2.6) 

Substituting (2.6) into (1.3) we obtain, in the straightforward notation, the following ex- 

pression connecting the mean stress and deformation tensors: 

From (2.6) and (2.7) it follows that in the general case the elastic operator and the 

macroscopic stresses have the form of a sum containinga quasi-static part, a term depending 
on the even derivatives of mean deformations, and an operator part. Depending on the quantity 

0 and the scale of variation in (e> , different terms become dominant in the defining rela- 

tions (2.7). For the static fields o : 0 the quasi-static part will be essential, and the 
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long waves (low frequencies) will demand the terms of the second part to be taken into account. 

The third term becomes essential for the wavelengths of the order of the inhomogeneities. 

For the rapidly oscillating fields (o--t cc) the dispersion vanishes. 

3. Let us compute the kernel of the effective operator, using the standard equation 

AT+ k,*pop(+p= 0 /12/ for the medium characterised by the correlation function 

(y (xl)? (ra), = k&'o*R (O)e-pa-'. y (2) = k,*pLap’p-’ 

The equation for the averaged field <'p> has the form 

A <rp> + k,P~oM*<~> = 0 (3.1) 

and the integral operator M* in (3.1) is defined by the relation 

<pq> = M* <cp> = \p* (r - xl) <'P (xl)> dx, 

The eigenvalue m*(o,k) of the operator M* is given, analogously to (1.13) and (2.2), in terms 

of the eigenvalue g*(o,k) of the operator F*, by the formula 

A m* (a k) = l _ T,ge , To = (p&9-’ , 
%WR (0) 

g* (0, k) = 2 ca2 -c ka) , a = (1 - iak&“) a-’ 

Passing in (3.2) to the originals, we obtain an expression for the kernel p*(z-zl) in the 

form 

Let us write k, as follows: 

m 
'11 = z (1 - IIR (0) a*k,,*p,‘i-1 x (k + 1) (iak,,p’/?k + . ), I = k,po’/’ + ia-’ 

(3.4) 
k, = D (1 -- rrk&,R (0) 2%) 

ii=0 

Then, putting li, z k,po”‘+ icl, we obtain the Born approximation for p*(z--I,) in (3_3).Inclusion 

of multiple scattering in the two-point approximation requires that all terms of the series 
(3.4) be taken into account, and the series are in this case summed. 

The function g*(+ k) can be expanded within its circle of convergence into the series 

(3.5) 

In accordance with (3.5), we write the kernel of the operator coin the form 

From (3.6) it follows that the kernel CL * contains a local term and an operator term, but not 
a couple stress term. 

We note that the acoustic approximation discussed, which is defined by g* (0, k), is con- 

tained within the expression (2.2) for D* and characterizes the longitudinal wave. The term 
determines the domain of convergence of n*. Moreover, for the high frequencies the equations 
of elasticity of the inhomogeneous medium reduce to two Helmholtz equations /13/ and this 

enables us, using the results of the investigation of the standard equation, to judge certain 
effects occurring in the case of general equations of a structurally inhomogeneous elastic 

medium. 
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